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Abstract 
 

An increase in activity has been seen recently in the study of entanglement in bipartite quantum systems. The 

entropic characterization of separability of composite quantum systems has attracted a lot of interest among diverse 

techniques. In this research article, a new form of conditional Rényi relative entropy (known as Conditional 

Sandwiched Rényi Relative Entropy (CSRRE) form) is used to determine the bipartite separability limit in single 

parameter families of mixed W- and GHZ- states.  For N=3, 4 qubits, the non-entanglement limit in the 1: N-1 

partition of these states determined using CSRRE criterion is more restrictive than the separability range discovered 

by Abe-Rajagopal’s form of Tsallis entropy. It's established that1: N-1separabilty range determined using CSRRE 

approach precisely with the range determined by positivity of partial transpose criterion.  
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1. Introduction 

 

A lot of attention has lately been paid to 

characterizing the separability of composite 

quantum systems using the quantum entropic 

approach [1–9]. In a pure bipartite state, the 

von Neumann conditional entropy is negative, 

indicating that there is entanglement between 

the two parties.  This shows that while it is 

untrue for separable states, in entangled states 

the global disorder is lesser than the local 

disorder [10]. Extended quantum conditional 

entropies are preferable to conditional von 

Neumann entropies for the investigation of 

global vs. local disorder in mixed states.  

 In order to examine bipartite separability in 

various one parameter families of mixed 

quantum states, a novel conditional version of 

generalized Sandwiched Tsallis Relative 

Entropy (CSTRE) has recently been used [11–

14]. The bipartite non-entanglement limits that 

got through this novel Tsallis entropic criterion 

were more stringent than the non-entanglement 

limits that got through conventional entropic 

criteria. They really fitted  with the the non-

entanglement limits got according to Peres' 

Positivity of Partial Transpose (PPT) criteria. 

The search for new entropic criteria is 

encouraged by conditional Tsallis entropy's 

success in identifying the tougher non-

entanglement limits. 

In this study, the bipartite separability of N- 

qubit one parameter families of mixed W- and 

GHZ- states is determined using the conditional 

form of generalized Rényi relative entropy 

[15].  We also compare the findings to those 

obtained using the PPT criteria and the Abe-

Rajagopal version of Tsallis entropy. 

 

2. Rényi relative entropy and its new 

conditional form 

 

The Rényi and Tsallis entropies, denoted, 

respectively, by SR (ρ) and ST (ρ), are as follows 
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SR(ρ) =  
1

1−𝑞
  ln Tr (ρq),                      (1) 

 

ST(ρ) = 
𝑇𝑟 (𝜌𝑞)−1

(1−𝑞)
 

 

Here q is a non-zero, non-negative real 

parameter. In the limit q → 1 both Rényi and 

Tsallis entropies reduce to von Neumann 

entropy. 

For the density operator’s ρ and σ the 

conventional quantum relative Rényi entropy is 

defined, as 

 

DR(ρ|| σ) =  
ln  𝑇𝑟(𝜌𝑞 𝜎1−𝑞)

𝑞−1
  for q ϵ (0,1) ∪ (1, ∞) 

 

        = Tr [ ρ( ln ρ - ln σ )]   for q →1.       (2) 

 

Independently, Wilde et al. [11] and Müller-

Lennert et al. [12] presented a generalized 

version of quantum relative Rényi entropy: 

 

𝐷̃R(ρ|| σ) =  
1

𝑞−1
ln [ 𝑇𝑟( 𝜎

1−
𝑞

2𝑞𝜌 𝜎
1−

𝑞

2𝑞)𝑞]     (3) 

 

for q ϵ (0,1) ∪ (1, ∞) 

 

The quantum relative Rényi entropy (3) reduces 

to the conventional value given by (2) 

whenever the density operator's ρ and σ 

commute; hence the current form is an 

extension to the non-commutative situation. 
 

The conditional version of 𝐷̃R(ρAB|| σ) (we call 

it as Conditional Sandwiched Rényi Relative 

Entropy (CSRRE)) is now defined by taking σ 

= IA ⊗ ρB  (or ρAB ⊗ IB) where ρB = TrA(ρAB) [ 

similarly ρB = TrB (ρAB)] the single party density 

matrix of the state ρAB. It is given by 

 

𝐷̃R(ρAB|| ρB) =  
1

(𝑞−1)  
 Q(ρAB|| ρB)    (4) 

    

Where Q(ρAB|| ρB) = ln [ 𝑇𝑟( 𝜎
1−𝑞

2𝑞 𝜌 𝜎
1−𝑞

2𝑞 )𝑞]   
 

One must build the unitary operator that 

diagonalizes the subsystem density matrix ρB in 

order to evaluate the formula Q(ρAB|| ρB). 

 

If the unitary operator UB that diagonalizes ρB, 

we have  

 

σD = U  𝜎
1−𝑞

2𝑞  U† 

 

for σ = I ⊗ ρB  ,  U = I ⊗ UB  , 

 

σD = diag (𝜆1
1−𝑞

2𝑞 , … 𝜆𝑛
1−𝑞

2𝑞 ) 

 

Thus Q(ρAB|| ρB) in equation (4) simlifies to  

 

Q(ρAB|| ρB)   = Tr[(σD U ρ U† σD )q]            (5) 

  

By evaluating the eigenvalues of σD U ρ U† σD and 

adding them gives the quantity Q(ρAB|| ρB). 

Thus the sandwiched form of conditional Rényi 

relative 𝐷̃R(ρAB|| ρB) is obtained. In the section 

that follows, this form is now used to determine 

the separability range in the one-parameter 

families of the W and GHZ states. 
 

3. One-parameter families of W and GHZ 

states and their separability. 
 

Incorporating either a W state or a GHZ state, 

the symmetric one-parameter families of N 

qubit mixed states are provided by 
 

ρN
(W)(x) =(

1−𝑥

𝑁+1
) PN +x |W〉N 〈W| 

and 

ρN
 (GHZ)(x)  =(

1−𝑥

𝑁+1
) PN +x |GHZ〉N 〈GHZ| 

 

Here 0 ≤ x ≤ 1, PN = ∑ |
𝑁

2
, 𝑀𝑀 〉 〈

𝑁

2
, 𝑀| are the 

symmetric subspace projectors of N-qubits 

formed by the N + 1 angular momentum 

states|
𝑁

2
, 𝑀〉, M =

𝑁

2
, 
𝑁

2
− 1,… ,−

𝑁

2
, pertaining 

to the highest value of total angular momentum 

J = N/2. 

 

The AR q-conditional entropy has been used to 

determine the non-entanglement limits of the 

noisy one-parameter family of W and GHZ 

states, as shown in Ref. [8].  Their results for 

the two qubit states of ρN
(W)(x) matches with the 

positive partial transpose (PPT) criterion [18] 
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but for both W and GHZ state families  the 

non-entanglement limits obtained by them is 

weaker than the limits obtained through PPT  

when N ≥ 3. 

It observed that the noncommutativity between 

density operator ρAB with ρB is crucial and 

although it is weaker than the PPT criterion, the 

range of separability provided through 

nonnegative values of the conditional 

sandwiched Rényi relative entropy is stricter 

than that derived through the AR q-conditional 

entropy. 

 

For ρ3
(W)(x) ≡ ρABC the matrix form of ρBC 

obtained and also we arrive at σD U ρ3
(W) U† σD 

through the unitary matrix that diagonalizes it. 

Here we have 

 

σD = I2 ⊗ diag ((
1

3
)

1−𝑞

2𝑞
, 0, (

1−𝑥

3
)

1−𝑞

2𝑞
 , (

1+𝑥

3
)

1−𝑞

2𝑞
) 

 

U = I2 ⊗ 

(

 
 

1 0 0 0

0
1

√2
−

1

√2
0

0 0 0 1

0
1

√2

1

√2
0
)

 
 

,  ρ = ρ3
(W)(x) 

 

The matrix σD U ρ U† σD contains the non-zero 

eigenvalues as shown  
 

γ1 = 

3(1−𝑥)3−1/𝑞

4
, γ2 = 

3(1−𝑥)1/𝑞3−1/𝑞

4
,  

 

 

γ3 = 

3−1/𝑞 (1+3𝑥)[1+𝑥+2(1−𝑥)1/𝑞]

4 (1+𝑥)
, 

 

 

γ3 = 

3−1/𝑞 [(1+𝑥)(1−𝑥)
1
𝑞+2(1−𝑥)(1+𝑥)1/𝑞]

4 (1+𝑥)
 

 

The Conditional Sandwiched Rényi Relative 

Entropy in Eq. (4) may now be evaluated for 

various values of q, and one can derive 𝐷̃R(ρAB|| 

ρB) as a function of x. 

The plots in Figs. 1 and 2 show the tighter non-

entanglement limit for ρ3
(W)(x) in its A:BC 

partition for increasing values of q. 

 In the A:BC partition of the one-parameter 

family of three-qubit W states, the non-

entanglement limit 0 x 0.1547 obtained through 

the Conditional sandwiched Rényi relative 

entropy approach is in perfect agreement with 

that obtained from the partial transpose 

criterion, as can be seen from Figs. 1 and 2. It 

should be observed that for the A:BC partition 

of ρ3
(W)(x), AR q-conditional entropy gives a 

weaker non-entanglement limit 0 ≤ x ≤ 0.2  . 

 

 
Figure 1: (Color online) CSRRE 𝐷̃R(ρ3

(W)|| ρBC) as a 

function of x for the state ρ3
(W) for different q.  

 

 

 
 
Figure 2: (Color online) The solid line indicates the 

implicit plot of 𝐷̃R(ρ3
(W)|| ρBC)  = 0 as a function of q. The 

dashed line shows the implicit plot ST
q (A|BC) = 0. 

 

The non-entanglement limits in the A:BCD 

partition of the state is determined by 

evaluating the CSRRE for ρ4
(W)(x) in a manner 

similar to that described before. 

The non-entanglement limits determined by the 

PPT criteria is fully consistent with the 

observation that ρ4
(W)(x) is separable for x ≤  

0.1124. Using an implicit plot of 𝐷̃R(ρ4
(W)|| 

ρBCD)  = 0 to represent our finding for ρ4
(W)(x), 

we compare it to the AR q-conditional entropy 
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ST
q (A|BCD) = 0in Fig. 3. It is important to note 

that the noncommuting nature of the state 

ρN
(W)(x) and its reduced equivalents IA ⊗ ρN-1   

make them excellent test cases for the current 

CSRRE separability criterion. 

 
 
Figure 3:  Solid line indicates the implicit plot of 

𝐷̃R(ρ4
(W)|| ρBCD)  = 0 and  dashed line is for ST

q (A|BCD) = 

0  for different values of  q.. 

  

In Ref [8], the non-entanglement limit for N 

qubit GHZ states is calculated using AR q-

conditional entropy, and only the A:BC 

partition's non-entanglement limit was found to 

fulfill the PPT criterion's ρ3
(GHZ)(x) value. It 

should be noted that the PPT criterion and the 

AR q-conditional entropy criterion both 

indicate that the non-entanglement limit in the 

A: BC partition of ρ3
(GHZ)(x) is [0, 0.1428]. The 

same non-entanglement limit is seen in an 

explicit assessment using the CSRRE 

technique, demonstrating that the PPT range 

defines the boundary of the CSRRE 

separability domain. 

 

Only in the A:BCD partition of ρ4
(GHZ)(x)do the 

non-entanglement limits derived using the PPT 

criteria and the AR q-conditional entropy 

technique coincide for N = 4 as well. Here, we 

list the non-entanglement limit achieved by the 

current CSRRE technique and demonstrate that 

they are identical to those obtained by the AR 

q-conditional approach in all conceivable 

partitions of the state ρ4
(GHZ)(x). Our findings 

for the various partitions of the W and GHZ 

one-parameter families are summarized in 

Table I. In some of the noncommuting cases, 

such as in ρN=3,4
(W)(x) in one of their A:BC and 

A:BCD partitions, the CSRRE approach 

matches the PPT criterion and produces a non-

entanglement limit that is either equal to or 

more stringent than the range obtained through 

the AR q-conditional entropy. 

  
TABLE I. List of non-entanglement limit of various states 

through PPT and different entropic criteria. 

 

4. Conclusion 

 

The eigenvalues of the composite state and its 

subsystems are necessary for determining 

entanglement using Rényi and Tsallis 

conditional entropies [1–9]. Global disorder is 

less for the separable states than local disorder 

[10], as shown by the positivity of their 

conditional entropies. Clearly, entanglement is 

shown by the negative conditional entropies. 

However, the eigenvalue-based approach is just 

sufficient but not necessary to find 

entanglement. The separability of noisy one-

parameter families of three- and four-qubit W 

and GHZ states has been investigated using the 

CSRRE. The outcomes were compared with 

those achieved using Peres' PPT criteria and 

AR q-conditional entropy. The CSRRE was 

demonstrated to be superior than AR q-

conditional entropy; nevertheless, the 

separability range is constrained by the PPT 

Quantum 

state 

von 

Neumann 

conditional 

entropy 

AR q-

conditional 

entropy 

CSRRE PPT 

ρ3
(W)(x) 

A:BC 

partition 
{0,0.5695} {0,0.2} {0,0.1547} {0,0.1547} 

AB:C 
partition 

{0,0.7645} {0,0.4286} {0,0.3509} {0,0.1547} 

ρ3
(GHZ)(x) 

A:BC 
partition 

{0,0.5482} {0,0.1428} {0,0.1428} {0,0.1428} 

AB:C 

partition 
{0,0.7476} {0,0.3333} {0,0.3333} 

{0,0.1428} 

ρ4
(W)(x) 

ρ4
(W)(x) 

A:BCD 

partition 
{0,0.5193} {0,0.1666} {0,0.1123} {0,0.1123} 

AB:CD 

partition 
{0,0.6560} {0,0.2105} {0,0.2105} {0,0.0808} 

ABC:D 

partition 
{0,0.8222} {0,0.5454} {0,0.4174} {0,0.1123} 

ρ4
(GHZ)(x) 

A:BCD 

partition 
{0,0.4676} {0,0.0909} {0,0.0909} {0,0.0909} 

AB:CD 

partition 
{0,0.6560} {0,0.2105} {0,0.2105} {0,0.0625} 

ABC:D 

partition 
{0,0.7868} {0,0.375} {0,0.375} {0,0.0909} 
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criteria. The outcomes of our study are 

presented in Table I. The findings 

unambiguously show that the CSRRE 

technique for the 3 and 4 qubit one parameter 

family of W and GHZ states is either the same 

as or weaker than the PPT criteria. It is 

currently unclear how to determine the 

separability range for more qubits. 
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