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Abstract 
 

The current examination delves into the Casson nanofluid flow in the vertical microchannel. The model employed in 

this investigation is Buongiorno model which emphasizes the light on Brownian motion and thermophoresis effects 

occurring during the fluid flow. The microchannel walls are constructed in such a way so that they facilitate the  

suction and injection of the fluid simultaneously. Porous media is incorporated using Darcy-Forchheimer model. 

Involving these effects governing equations are modeled which is solved using Runge-Kutta Fehlberg 4
th

 -5
th

 order 

method. Entropy generation and Bejan number are also obtained for the concerned flow to record irreversibilities in 

the microchannel. The findings of this examination   depict that rise in Casson parameter augments the flow velocity 

but causes depletion in Bejan number. On packing the microchannel with high porosity, the velocity magnifies. Both 

Brownian motion and thermophoresis parameter magnifies the temperature. 

 

Keywords: Casson fluid, Buongiorno model, Darcy Forchheimer model, convective boundary, microchannel 

 

1. Introduction 

 

Darcy Forchheimer flow finds its applications 

in manufacturing processes in the industries 

which involve pollution of ground water,   

generation of crude oil and in propulsion     

devices of missiles, satellites and other space 

vehicles. Darcy law is formulated by making 

use of homogenization but while focussing on 

relation between Darcy's velocity and pressure 

gradient there exists the non-linearity and this 

term appears to be quadratic. Inertial impacts 

in a porous medium when Reynolds number is 

kept moderate are responsible for this         

non-linear term. The very existence of this 

term was noted by Forchheimer [1]. Darcy 

Forchheimer equation are used to determine 

high velocity flow in the porous media. 

Girault and Wheeler [2] discretized            

Darcy–Forchheimer model numerically. They 

have solved the non-linearity in the equation 

by using an alternating-directions algorithm. 

Knabner and Roberts [3] mathematical        

analysed a discrete fracture model in which 

they have studied the flow in the fracture      

implementing Darcy–Forchheimer flow. They 

have attained the existence and uniqueness of 

the solution for the described flow. Saif et al 

[4] examined the flow utilising this model 

over a bent stretching surface. Nayak et al [5] 

conducted an optimization of entropy on   

Darcy–Forchheimer SWCNT/MWCNT flow. 

Thermal field were noted to magnify for   

higher porosity and temperature ratios in their 

study. 

Casson fluid model is the model which best 

describes the flow of blood in the small and 

narrow blood vessels. This model finds its  
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purpose in constructing the model for          

removing the waste and impurities from the 

bloodstream before reaching the human body. 

This has drawn the researcher to take up the 

work in this model. Casson [6] analysed the 

Casson fluid flow over a vertically placed   

surface in the presence of chemical reaction 

and magnetic field. Mustafa et al. [7] also 

worked in the same direction, but over a    

moving plate with a parallel free stream. They 

have shown that the reducing Nusselt number 

is an elevating function of stretching ratio. 

Mukhopadhyay [8] came up with the Casson 

fluid flow and heat transfer upon a nonlinearly 

stretched surface and also examined the same 

for unsteady case. Hayat et al. [9] discussed 

the flow and developed the convergent solution 

of series for a Casson fluid in the presence of 

nanoparticles and radiation. 

Hamid et al. [10] attained the dual solutions for 

the flow and transport of heat of Casson fluid. 

They have perceived that radiation is a factor 

affecting both steady and unsteady flow. Aneja 

et al. [11] made an analysis of natural          

convection in a porous cavity that was partially 

heated for Casson fluid flow. The coupled 

equations formed are solved by the               

implementation of penalty FEM method.   

Sreelakshmi et al. [12] investigated the 

Buongiorno model for free convection on  

Casson flow on a radiated-elastic surface.   

Nagaraja and Gireesha [13] studied the        

behaviour of such fluid over curved surface 

that can be stretched with the impact of heat 

production on MHD Casson fluid flow. The 

result attained by them is worth noticing for 

future advancement. 

Suspending tiny solid particles to the base   

fluid assists in the energy transmission, fluids 

can improve their thermal conductivity and 

thus this provides an effective and innovative 

way to enhance the heat transfer                

characteristics  significantly. Buongiorno 

model exemplifies the impact of nano         

dimensional particle due to the phenomenon of 

Brownian motion and thermophoretic           

diffusion. Buongiorno [14] studied that the 

base fluids thermal conductivity can be magni-

fied in an unnatural way by embedding               

nanoparticles into them. Maghrebi et al. [15] 

came up with the forced convection heat   

transfer of nanofluids in a porous channel.         

Darcy–Brinkman–Forchheimer approach is 

implemented to study the porous behaviour. 

Schio et al. [16] made research on the         

consequences of Brownian and 

thermophoresis diffusion on the laminar forced 

convective flow in a channel. Their analysis 

revealed that if the boundary temperature is 

linearly varied the concentration no longer is 

the function of temperature for prescribed 

Peclet number value. 

Nield and Kuznetsov [17] studied the forced 

convection in a parallel-plate channel          

assuming streamwise varying temperature 

boundary conditions engaged by a nanofluid. 

Swain et al. [18] used this model to report the 

consequence of allowing the Williamson 

nanofluid through porous medium              

consideration of irregular heat source/sink. 

Kho et al. [19] looked into transmission of heat 

and mass when Williamson nanofluid is passed 

over the stretched surface. Chu et al [20] gave 

away the importance of activation energy,     

bio-convection and  third grade fluid flowing 

over a stretched surface. Their work has      

reported that thermal field is enlarged by  

augmentation in Brownian movement and 

thermophoretic diffusion. This model was also 

implemented by Javed and Farooq [21] for 

their study on melting rheology in two-fold 

stratified Eyring-Powell flow over surface 

when the thickness is varied.  

 Abbassi [22] analyzed entropy generat-

ed in a regularly heated microchannel heat 

sink (MCHS). As a criteria for the  functioning 

of the system they have  discussed second law 

analysis. Sciacovelli et al [23] carried out the 

study on entropy to decipher its importance in 

designing engineering tools. They have        

focussed on minimising entropy generated 

within the system. Bhatti et al. [24] presented 

a model theoretically to determine the entropy 

produced on electro-kinetically modulated per-

istaltic propulsion on the magnetized 

nanofluid flow through a microchannel with 

Joule         heating. Manay et al. [25] investi-

gated the   effects when nano sized TiO2 parti-
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cles is   immersed in the base fluid in a 

MCHS. Liu et al. [26] studied the entropy 

generation analysis of electro-magneto hydro-

dynamic (EMHD) flow of Newtonian fluids 

through a bent rectangle shaped microchannel. 

Samal and Moharana [27] made a numerical 

study on entropy produced in recharging as 

well as simple microchannel to explore effect 

of geometrical alteration on thermodynamic 

irreversibility in a system. Gireesha et al. [28] 

scrutinized entropy of couple stress liquid 

flowing in an upright microchannel. 

 

The present work portrays the impacts of 

Casson nanofluid flowing along the            

horizontal microchannel whose walls promote 

simultaneous injection/suction of the fluid. 

Microchannel is incorporated with porous  

media by implementing Darcy-Forchheimer 

model. Consequences of two mechanisms 

namely Brownian motion and thermophoresis 

on the flowing fluid along with the transport of 

mass and heat is accounted. Convective and no 

slip boundary conditions are considered. The 

consequential outcomes are sketched in the 

graphs provided. 

 

1. Mathematical Formulation 

 

A Casson nanofluid flow between two         

horizontal microchannel comprised of two 

plates of infinite length placed parallelly     

separated by a distance  , as shown in the   

figure. Here the fluid flow through the 

microchannel is regarded as steady, laminar, 

viscous and incompressible. The fluid    

movement is due to the pressure force on the 

flow. Here, the nanofluid suction and injection 

occurs uniformly at the upper and lower plates 

of microchannel respectively. The lower plate 

exchanges heat by convection with warm fluid 

at temperature   and the upper plate is kept at 

ambient temperature    as it exchanges heat 

with the surrounding fluid. In order to study 

heat and mass transfer, Buongiorno model is 

incorporated. It emphasizes on Brownian      

motion and thermophoretic mechanisms      

occurring in the fluid. Figure 1 describes the 

flow. 

For solving these equations, we have assumed 

that the velocity agrees slip condition at the 

plates and the heat transfer equation agrees 

with the convective conditions. 

 

 
Figure 1: Physical Interpretation of the flow 

 

The governing equations for above described 

incompressible Casson nanofluid flow are, 
2
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The entropy production equation becomes, 
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At the channel extremes no-slip and convec-

tive boundary conditions are assumed, 
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where     axial velocity,   -suction/injection 

velocity,        - dynamic viscosity, density, 

specific heat at constant pressure,   –  Casson  

parameter,    thermophoresis co-efficient, 

   Brownian movement co-efficient,    and 

  - concentrations at the wall and surrounding 

respectively, and   and    heat transfer         

co-efficient of the lower and upper plates  

likewise,    Forcheimer co-efficient,  

  porous media permeability. 

In order to make dimensions of the above 

equations to one, following variables are used. 
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Thus, we attain, 
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with boundary conditions, 
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In above equations,   
   

    
  

            

pressure gradient parameter,    
    

 
-    

Reynolds number,    
   

 
 Prandtl number, 

    
 

    Darcy number, 

          Peclet number,    
  

     
 

 temperature difference parameter,    
  

          
  – Eckert number,    

 

  
          

 
 Brownian motion parameter, 

   
          

   
 thermophoresis 

parameter,    
 

  
  Schmidt number, 

   
   

 
 - Biot number where       for 

lower and upper plates correspondingly,   
     

 
  diffusion parameter,   

     

  
 con-

centration difference ratio. 

Since we have            , 

where 

2
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transfer, 
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irreversibility due to mass. 

Thus, Bejan number, 
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2. Numerical Procedure 

 

One way to promise the solution of IVP to be 

precise is to solve the problem twice using step 

size   and    . But this process requires     

substantial simulation for the smaller step size 

and is carried out until the result is in good 

agreement. This numerical scheme i.e., Runge-

Kutta Fehlberg scheme is one such method 

which has a procedure to decide if the correct 

step size is used. At every step, 2 distinct     

approximations are obtained for the solution 

and compared. If the two responses are in close 

agreement, then approximation obtained is  

accepted if not, step size is lessened. The step 

size is magnified if the answer settles to more 

significant digits. Below 6 values are achieved 
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Then an approximation using 4
th

order RK-

method is, 
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It is noteworthy that   value is not counted in 

the above given formula. The other value of   

is known by 5
th

order RK-method as: 
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If           
    is small enough, then the 

method is terminated; or else the simulation is 

carried on using lesser step size  . The local 

truncation error is            
 . 

 

3. Result and Discussion 

 

Flow of Casson fluid in the horizontal 

microchannel with influence of Brownian 

movement and thermophoresis when the  

channel is incorporated with Darcy 

Forchheimer model is elaborated. The       

equations that we get are solved by making use 

of RKF-method in association with shooting 

procedure. The outcomes of the flow are      

discussed in this section. 

Velocity profile exhibits parabolic nature. At 

the extremes of the microchannel the flow   

velocity deteriorates with the excess but at the 

centre there is magnification in the flow      

velocity. Behaviour of    Reynolds number on 

flow velocity is represented in figure 2. There 

is decrement in the velocity at the fluid        

injecting wall and increment in velocity at 

fluid sucking wall of the channel. Consequence 

of rising Casson parameter on velocity of the 

fluid can be seen in figure 3. Higher the     

Casson parameter the more is the possibility of 

the fluid to behave as Newtonian fluid as the 

term     tends to zero. Thus, higher the    

Casson parameter value more is the velocity of 

the fluid. Figure 4 describes that on rising 

Darcy number, flow is facilitated well. This is 

because, permeability of porous medium     

enhances, leading to the cut down in friction 

with this medium. 
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Figure 2: Consequence of Reynolds number on velocity 

profile      
 

 
Figure 3: Consequence of Casson parameter on velocity 

profile      
 

 

 
Figure 4: Consequence of Darcy number on velocity 

profile      
 

Figure 5 shows that the velocity decreases with 

the increase in the value of Forchheimer       

co-efficient   and is maximum at the centre of 

the channel. Onenhancing    we observe     

depletion in ow velocity since the               

augmentation of the inertial effects rises the 

drag of the porous media which results in 

magnifying the resistance to the flow. 

 

 
Figure 5: Consequence of Forchheimer co-efficient on 

velocity profile w(y) 

 

Entropy generated is high at the suction wall 

and low at injection wall. The profile shows 

not much deviation at the centre of the         

microchannel for varying parametric values, 

but significant deviations can be observed at 

the walls. Bejan number profile is maximum at 

the centre of the microchannel and minimum at 

the boundaries which signifies the dominance 

of heat transfer and mass transfer                  

irreversibility at the centre of the                  

microchannel.  

 

Figure 6(a) gives the effect of Casson          

parameter   on thermal profile. On magnifying  

temperature elevates.  

 

 
 

Figure 6(a): Consequence of Casson parameter on tem-

perature profile      
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Figures 6(b) and 6(c)  depict the profile of   

entropy generation and Bejan number for   

varying  . Maximum entropy is produced 

when   value is high. As the Casson parameter 

increases, the Bejan number decreases which 

states that for higher value of Casson           

parameter maximum rreversibility is            

contributed due to fluid  friction. 

 

 
Figure 6(b): Consequence of Casson parameter on    

entropy generation profile       
 

 
Figure 6(c): Consequence of Casson parameter on Bejan 

number profile       
 

Profiles of temperature, entropy rate and Bejan 

number is on display in the figures 7(a), (b) 

and (c) respectively. By the augmentation of 

Bi, depletion in temperature is attained. The 

reason behind this is transport of heat          

occurring from warm nano-dimensional         

particles to relatively cold nano-dimensional 

particles. This can be ascribed to the cooling 

effects by the convective heat loss. Also, for 

increasing   , entropy enhances which is    

evident from the reason that higher value of    
promotes convection. From figure 7(c) Bejan 

number profile maximizes for higher    value. 

For high    value irreversibility due to heat 

transfer is more. 

 
Figure 7(a): Consequence of Biot number on             

temperature profile      
 

 
 

Figure 7(b): Consequence of Biot number on      

entropy generation profile       

 

 
Figure 7(c): Consequence of Biot number Bejan number 

profile       

Figures 8(a), (b) and (c) are representation of 
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varying    values on thermal, entropy and  

Bejan number profile. Elevation in thermal and 

entropy profile is perceived for higher values 

of   . This is the result of viscous dissipation 

effect. Higher the    value more is viscous 

heating causing rise in temperature and as a 

result rise in entropy. Ratio of viscous force to 

inertial force gives Eckert number. When the 

viscous force of the fluid is utmost randomness 

of the particles is more which causes the loss 

of thermal energy. Higher the viscous          

dissipation larger is the irreversibility caused in 

the microchannel and irreversibility due to  

fluid friction is dominant throughout the 

microchannel. 

 

 
Figure 8(a): Consequence of Eckert number on        

temperature profile      
 

 
Figure 8(b): Consequence of Eckert number on entropy 

generation profile       
 

 

 

 
Figure 8(c): Consequence of Eckert number on Bejan 

number profile       
 

Figures 9 (a) and (b) illustrates the temperature 

and concentration to maximize with the rise 

  . As    magnifies, less heat is transferred 

to the walls, thus there is elevation in          

temperature as there is random gesture of fluid 

particles. Increment of concentration with  

larger values of    is because of therandom 

motion of nano-sized particles which prohibit 

them to settle down, thus mass flux rises,   

consequently concentration is observed to rise 

throughout the flow. Entropy generated is low 

at the lower plate and high at the upper plate 

for increasing    as shown in figure 9 (c). 

Similar behavior is retained for Bejan  number 

profile in figure 9 (d) as well. Thus, for large 

values of    irreversibility caused due to fluid 

friction is more at the lower wall and least at 

the top wall. 
 

 
Figure 9(a): Consequence of Brownian motion parame-

ter on temperature profile      
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Figure 9(b): Consequence of Brownian motion         

parameter on concentration profile      
 

 
Figure 9 (c): Consequence of Brownian motion parameter 

on entropy generation profile       
 

 
Figure 9(d): Consequence of Brownian motion          

parameter on Bejan number profile       
 

Thermal profile shows enhancing nature for 

higher    value which is disclosed in figure 10 

(a) but the reverse behavior is attained for  

concentration profile. Thermophoresis is a 

mechanism which arrives when there is       

existence of thermal gradient. This process  

involves deposition of particles onto the cold 

surfaces. During the process a concentration 

gradient originates and the profile for         

concentration is noticed to be increasing one as 

in figure 10(b).  

 
Figure 10(a): Consequence of thermophoresis parameter 

on temperature profile      
 

 
Figure 10(b): Consequence of thermophoresis parameter 

on concentration profile      
 

 
Figure 10 (c): Consequence of thermophoresis parameter 

on entropy generation profile       
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The entropy is high at the    bottom walls and 

low at the top walls as there is diffusion of the 

particles to the cold surface i.e., at the suction 

wall, the profile exhibits  decreasing to in-

creasing nature all through the microchannel as 

in figure 10 (c). Similar     behavior is noticed 

in figure 10 (d) for      profile. 
 

 
Figure 10(d): Consequence of thermophoresis parameter 

on Bejan number profile       

 

Figure 11(a) elucidates the conduct of Schmidt 

number   on concentration profile. It is as  

expected because Schmidt number is the ratio 

of momentum diffusivity to mass diffusivity 

which implies that rise in    is nothingbut rise 

in momentum diffusivity. 

 

 
Figure 11(a): Consequence of Schmidt number on   

concentration profile      
 

Apparently, for  higher value of Schmidt  

number irreversibility is low on lower side of 

the channel whereas for same Schmidt number 

irreversibility is high at upper side of the  

channel. That is Sc is  depleting function on 

bottom and magnifying function at the top for 

both entropy generation and Bejan number as 

in figures 11(b) and 11(c). 
 

 
Figure 11(b): Consequence of Schmidt number entropy 

generation profile       
 

 
 

Figure 11(c): Consequence of Schmidt number on Bejan 

number profile       
 

4. Concluding Reviews 
 

The study discloses the flow of Casson nano-

material flowing through the horizontal 

microchannel with the effect of Brownian 

movement and thermophoresis when subjected 

to no slip and convective conditions at the   

extremes of the microchannel. Darcy 

Forchheimer model is implemented. Thus,  

major results can be listed as:  
 

 The velocity of the non-Newtonian fluid 

considered is noticed to elevate with    and 

deplete with Forchheimer co-efficient  . 
 

  The Casson parameter   increases the  

temperature and entropy all through the 

microchannel, whereas it decreases the Bejan 
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number. For the higher value of it, the fluid 

starts to behave as Newtonian fluid. 

 

 Thermal profile is an elevating function for 

  ,    and    and depleting functionof   . 
 

    and    maximizes the profile of      

concentration but    minimizes the same. 

 

  The Biot number    increases the entropy 

and Bejan number profile. 

 

Bejan number diagrams depict the plots to   

deplete at the bottom wall and elevate at the 

top wall for varying    and   . Contrary    

nature is gained in case of   . 
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