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Abstract 
 

In  this  communication,  we  present  characterizations  of  graphs  whose  vertex  semi-middle graph )(GM
v

 is  

planar,  outerplanar  and  minimally  nonouterplanar  in  terms  of  forbidden  subgraphs.  Further, we obtain 

)(GM
v

is not  maximal planar.  
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graph. 

 

1. Introduction 

 

A characterisation of graphs with a certain   

attribute by "forbidding" a certain family of 

subgraphs is normally of high interest due to 

its practical applicability. Greenwell and 

Hemminger [1] defined graphs with planar line 

graphs in terms of forbidden subgraphs. We 

will define a graph in this work as a nontrivial 

connected graph. We use the terminology of 

[2]. 

 

A graph is said to be planar if it can be drawn 

on the plane without any of its edges            

intersecting. A planar graph is outerplanar. IIf 

all of its vertices are on the exterior region, it 

can be embedded in the plane. The concept of 

a minimally nonouterplanar graph is first     

described in [3]. When considering a planar 

graph G, the inner vertex number i(G) is      

defined as the minimum possible number of 

vertices that do not belong to either the  

boundary of the exterior region or any of the  

boundaries of G in the plane. Assuming that 

i(G) = 0, then G is clearly planar. If i(G)=1, 

then a graph G is minimally nonouterplanar 

and G is k-minimally nonouterplanar (k≥2) if 

i(G)=k.   

 

Consider a planar graph with R regions. The 

vertex semi-middle graph of a graph G,       

denoted by )(GM v  is a graph whose vertex set 

is )()()( GRGEGV   and two vertices of 

)(GM v  are adjacent if and only if they       

corresponds to two adjacent edges of G or one 

corresponds to a vertex and other to an edge 

incident with it or one corresponds to a vertex 

other to a region in which vertex lies on the 

region. This concept was introduced in [17]. 

The graph G and its vertex semi-middle graph 

)(GM v  as shown in Fig.1. Many other graph 

valued functions in graph theory were studied, 

for example, in [4–16, 18-21]. 
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Figure 1: The graph G and its )(GM v . 
 
2. Preliminaries 

 

Theorem 2.1. [17] For every planar graph G, 

  [ )(GM v }=1 if and only if G = 3C  or

),,(
3213,1 nnn PPPK , Where .0,, 321 nnn  

 

Theorem 2.2. [17] For every planar graph G, 

  [ )(GM v ] = 2 if and only if G = 4C  or  2,2B  

or subdivision of any edge in 2,2B  or )(
13 nPC , 

Where .11 n  

 

Theorem 2.3. [17] For every graph G, )(GM v  

is planar if and only if G =   . 

 

Theorem 2.4. [17] For every planar graph G, 

)(GM v  is outerplanar if and only if G= 2P . 

 

Theorem 2.5. [17] The )(GM v  of a 

conneccted graph G is k-minimally 

nonouterplanar k     if and only if G = 2kP . 

 

3. Main Results 

 

Theorem 3.1. For every graph G, )(GM v  is 

not maximal planar. 

 

Proof. Since E(G) and R(G) are independent 

set of vertices of )(GM v  and also it is possible 

to join at least two vertices of E(G) without 

loosing planarity. Therefore, )(GM v  is not 

maximal planar.  

 

Theorem 3.2. The vertex semi-middle graph 

)(GM v  of a graph G is planar if and only if G 

has no subgraph homeomorphic to 3C  or 3,1K  

or 2,2B . 

 

Proof. Let )(GM v  be planar. By Theorem 2.1, 

G has no subgraph homeomorphic to 3C .  

Suppose G is a 3,1K . By Theorem 2.1, G has 

no subgraph homeomorphic to 3,1K . Suppose 

G is 2,2B . By Theorem 2.2, G has no subgraph 

homeomorphic to 2,2B . Hence G has no 

subgraph homeomorphic to 3C  or 3,1K  or 2,2B . 

 

On the other hand, assume G has no subgraph 

homeomorphic to 3C  or 3,1K  or 2,2B . Assume 

that G is a cycle of length greater than two, 

then G contains a subgraph homeomorphic to 

3C , a contradiction. Suppose G is a path of 

length two adjoined to some vertices on degree 

of two, then G contains a subgraph 

homeomorphic to 3,1K . Suppose G is 2,2K  

then G contains a subgraph homeomorphic to 

2,2B . Then Clearly every block of G is a path 

by Theorem 2.3, )(GM v  is planar. 

 

Theorem 3.3. The )(GM v  of a graph G is 

outerplanar if and only if G has no subgraph 

homeomorphic to 3P . 

 

Proof. Assume that )(GM v  is outerplanar. By 

Theorem 2.4, G has no subgraph 

homeomorphic to 3P .     

 

On the other hand, assume G has no subgraph 

homeomorphic to 3P . Assume G is path of 

length greater than or equal to 4, then G      

contains a subgraph homeomorphic to 3P , a     

contradiction. Then G must be a outerplanar. 
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Theorem 3.4. The vertex semi-middle graph 

)(GM v  of a graph G is minimally 

nonouterplanar if and only if G has no 

subgraph homeomorphic to 2P . 

 

Proof. Suppose )(GM v  is minimally 

nonouterplanar. By Theorem 2.5, G has no 

subgraph homeomorphic to 2P . 

 

Conversely, suppose G has a subgraph 

homeomorphic to 2P . Then clearly G is 3P . By 

Theorem 2.5, )(GM v  is minimally 

nonouterplanar.  

 

Theorem 3.5. If G is a 2P , )(GM v  is maximal 

outerplanar. 

 

Proof. Suppose G is a 2P . By Theorem 2.4 

)(GM v  is 4C , which is a outerplanar. 

 

Suppose G is a 3P . Then )(GM v  is 1-

minimally nonouterplanar. Hence for G is a 2P

then )(GM v is maximal outerplanar. 

 

4. Conclusion 

 

In this communication, we discuss the planar, 

outerplanar and minimally nonouterplanar of 

vertex semi-middle graph in terms of           

forbidden subgraphs. Also we discuss )(GM v  

is not maximal planar. 
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