
JNNCE Journal of Engineering & Management, Volume 4, No.1, January – June 2020 ISSN 2582-0079

 17

Implementation of AES Algorithm Using Verilog

Ganesh Gopal Shet , Jamuna V, Shravani S, Nayana H G, Pramod Kumar S

J N N College of Engineering, Shimoga.

ganeshshet800@gmail.com, jamunav014@gmail.com ,
shravanishamsundar@gmail.com, nayanahg16@gmail.com, pramodkumars@jnnce.ac.in

Abstract

Cryptography is very important now-a-days for data security and integrity as the ecommerce and internet

applications has increased. But, it has least importance in many cases because of extra memory and other
requirements needed for the implementation. The main aim of this work is to implement Advanced Encryption
Standard (AES) Encryption using Verilog. To protect data like electronics, cryptographic algorithms are used. The
digital information can be encrypted and decrypted by the block cipher of AES algorithm. It can be implemented
with the key length 128, 192, 256 bits. Each round of encryption associated with delay can be reduced by AES
parallel design.

Keywords: Implementation, Multi-hop Routing Protocol, Energy Consumption

1. INTRODUCTION

In this technical era, we have seen a drastic
growth in telecommunication. Through
internet anybody can access the data present in
computer in any corner of the world. Many
activities like e-commerce, data sharing etc.
will happen through internet. So, data
authentication and secured communication
become very important. Here the cryptography
will play an important role. Now a day’s many
data encryption algorithms are available.
Digital information can encrypt and decrypt by
using block cipher by using cryptographic keys
of 128, 192 and 256 bits [1].

The main objective of this project is to
implement AES algorithm using Verilog and
to give optimum circuit with clock frequency,
path delay, time required to generate keys and
decoding the data [2]. For the secure
communication, cryptography is useful in
presence of third parties. It mainly deals with
the analysing protocols and overcome the
influence of information on security. The
disciple like mathematics, computer science
and electrical engineering inspected by
modern cryptography [3].

2. Problem statement

Considering the history of communication,
it is not surprising that security has taken the
last seat. Because implementing security
mechanisms in distributed applications creates
extra overheads like more memory,
handshaking, more CPU time for calculating
keys etc. [4].

The main aim of this work is to provide a
solution for the above stated problem with the
help of Verilog code using Xilinx. In real time
applications the software code takes lot of time
to execute the same code again and again [5].
But particular hardware for a repeating code
reduces the execution time. So, this work
provides solution to the above-mentioned
real-time problem.

3. Methodology

The methodology involved in this system is

Verilog code. To support both analog and
digital circuit designing, Xilinx provides

Available online @ https://jjem.jnnce.ac.in
https:www.doi.org/10.37314/JJEM.2020.040103

Indexed in International Scientific Indiexing (ISI)
Impact factor: 1.025 for 2018-19

Published on: 30 November 2020

JNNCE Journal of Engineering & Management, Volume 4, No.1, January – June 2020 ISSN 2582-0079

 18

analog and digital platform. It is interesting to
note that any encryption algorithm works in a
digital environment and all the blocks in the
system will handle digital data.

3.1. Advanced Encryption Standard (AES)

AES is a type of cryptography algorithm. It
performs the encryption and decryption
operation. The input information is known as
plaintext and encrypted form is called as
ciphertext. Ciphertext contains the plaintext
information, but it is not in a readable form to
humans. Encryption procedure is varied to one
algorithm to another algorithm. Without the
key ciphertext cannot be used to encrypt or
decrypt. AES has proven to be more efficient
than its encryption processors. AES is mainly
used in voice communication, network
applications, vertical private network, secured
socket layer (SSL) [6-7].

Figure 1: AES-128bit Overall Representation.

This overall representation has 4 operations as
show in figure 1:

• SubByte()
• ShiftRow()
• MixColunm()
• AddRound key ()

Table 1: Key-Block-Round combinations.

 Key
Length

(NK
words)

Block
Size
(Nb

words)

Number
of

Rounds(
Nr)

AES-128 4 4 10
AES-192 6 4 12
AES-256 8 4 14

For a 128-bit implementation it requires the 10
rounds of operation as shown in table 1. Each
round having 4 steps as following:
1. Byte substitution using a substitution Box

(S-box).
2. Shifting rows of matrix by different offsets.
3. Mixing the rows with each columns of the

matrix.
4. Adding a Round Key to the matrix.

3.2. The AES Algorithm

The AES algorithm has mainly 3 encryption
modes: 128 bits, 192 bits, 256 bits. Each
encryption mode has a corresponding number
of rounds Nr based on length of Nk words. The
state array block size term Nb is constant for
all encryption modes. Each state has 4 words,
each words has 4 bytes.

3.2.1 Encryption Process:

Both the encryption and decryption process
consist of a number of various transformations.
The number of rounds depends on the length of
the key used for the encryption process and
decryption process. For 128 bit, state array
requires 10 rounds of iteration for ciphertext
conversion (Nr=10). Each Nr-1 has 4 different
transformation i.e, Subbyte(), ShiftRow(),
MixColulnm(), AddRound key().

In Subbyte() Transformation, only a

nonlinear component is used in the entire
process. Eachbyte operates independently.
Each byte is replaced with S-box values. This
S-box invert is generated by taking the
multiplicative inverse in the finite field GF

JNNCE Journal of Engineering & Management, Volume 4, No.1, January – June 2020 ISSN 2582-0079

 19

(2^8) with irreducible polynomial
m(x) = x^8+x^4+x^3+x^1. After this apply
the Affine Transformation over GF (2^8).

In ShiftRow() Transformation, it cyclically
shifts bytes of rows in state array. Each row is
shifted by specified different offset values.
This operation is similar in decryption process
except to different rotational offset as shown in
figure 2.

Figure 2: AES Encryption Process.

In Mixcolumn() Transformation, it operates
column by column on state array treating each
4 term polynomial. Each column represented
as polynomials over GF (2^8) and multiplied
by modulo x^4+1 with fixed polynomial as
follows:

m(x)={03}x^3+{01}x^2+{01}+{02}

In AddRoundKey() Transformation, the

Round key is XORed with the output of
Mixcolumn block. Each Addroundkey consists
of Nb words from the key expansion unit.
These Nb words are added into the column of
state array. This is similar in decryption
process. In any expansion units a previous
Round key,generates a 4 word array generated
as a constant that changes each round and a
service of S-box values replacement for each
32 bit word of key. The key scheduling unit

generates an overall Nb (Nr+1) words as
shown in figure 3.

Figure 3: Encryption Using Cipher Feedback (CFB)

3.2.2 Decryption Process:

For decryption, the same process in the
reverse manner. It taking ciphertext as a input
and plaintext as an output. It also contains 10
rounds of process. Each round has 4 steps
similar to encryption process. AddRound key
is same for both encryption and decryption and
remaining steps is just inverse in decryption
i.e. Inverse Subbytes() , InverseShiftRows()
and Inverse Mixcolumn().

5. Verilog Implementation

Verilog HDL is used because it is easier to
explore different design options, flexibility to
exchange among environments. The
implementation code is pure without changing
the design Verilog code that could easily be
implemented on other devices, with. We have
used mainly three tools to implement the code
Notepad++, Questasim, Xilinx Synthesis and
Simulation Tools (ISE14.7). The goal of design
implementation is speed optimization, keeping
other constraints as minimum as possible. We
have implemented CBC Mode of AES Rijndael
Algorithm.

JNNCE Journal of Engineering & Management, Volume 4, No.1, January – June 2020 ISSN 2582-0079

 20

5. Tool Details

The editor used for writing the design codes
is Notepad++. Questasim 10.0 is used for
debugging and optimizing the design codes
and simulating. Xilinx ISE 14.7 is used for
synthesizing the design to the Zed (Zynq
Evaluation and Development) Board as shown
in figure 4. The code implementation results
are based on Questasim 10.0 simulation
results.

Figure 4: Zed Board Device Specifications

6. Encryption

6.1 Encryption Pre Round

 The Simple bitwise XOR operation are
performed in Pre Round Operation. .Because
of fully parallel architecture output of this
stage is registered.

6.2 Encryption Inner Rounds

 There are 10 rounds as per 128-bit AES
Algorithm. Every round includes 4 sub
modules SubByte() Transformation,
ShiftRow() Transformations, MixColoumns()
Transformation and AddRoundkey()
Transformation. Inner round includes 9 rounds
remaining one round is implemented as last

Round. For implementing 10 rounds, if we
instantiate each module 10 times, the overall
area requirement increases 10 times and
implementing it with Zed Board (XC7Z020)
resources utilization exceeds by 100% for
each encryption and decryption. .

Figure 5: Encryption Module Gate Level.

Figure 6: Encryption Process

To overcome this problem we used the
concept of reusing the same modules as many
times they are required. We used state diagram
at the top level [middleround()], which uses the
same module each times and registered output
is sent to the next state as input. Because of
this process, the IOB utilization is reduced to
5% and Slices utilization to 43% as shown in
figure 5 and 6.

6.3 Encryption Last Round

The last round contains three operations
namely

JNNCE Journal of Engineering & Management, Volume 4, No.1, January – June 2020 ISSN 2582-0079

 21

 SubByte()Transformation
 ShiftRow()Transformation()
 AddRoundKey()Transformation
 But MixColumn()Transformation

operation is excluded.

6.4 Unit of Key Expansion

From the original input round key, we are
generating all round keys. In encryption will
the original key will be last group of the
generated key i.e. Expansion keys in case of
decryption. Key Expansion module includes
sub modules rotate word() Transformation, Sub
Word() Transformation, Round constant
XORing(), and key round Module().

Figure 7: S-ROM Implementation

Rotate word () Transformation: The cyclic
rotation can be performed by each word from
[a0,a1,a2,a3] and returns the word
[a1,a2,a3,a0]. SubWord() Transformation
(key s-box) it is same as SubByte()
Transformation module only the difference is
that it processes bits. Round Constant ()
Transformation (key rcon()). Predefined round
32 bits constants of GF are fixed for each
round. A 4-bit round number and 32-bit output
of Sub Word () Transformation is taken as
input. Values corresponding to round key are
fetched from ROM and XORed with
keysbox(). AddRound() Transformation
(key round()). Key round is XORed with
previous round keys and output of key rcon()
as shown in figure 7.

7. Decryption

The Inverse Ciphertex transformations can be
performed by the reverse order of the
Ciphertext transformation.The transformations
used in the Inverse Ciphertext are:
InvShiftRow(),InvSubByte(), InvMixColumn()
and AddRoundKey().

As the decryption is inverse of encryption the
operations are performed in the inverse manner
of encryption. The last round of the encryption
becomes the first round indecryption Process
and the expanded key generated in Key
Expansion () is feedback instead of cipher key
as shown in figure 8 and 9.

Figure 8: Decryption Module - Gate Level

Figure 9: Encryption Output Waveform

8. Result Analysis

Simulation results are based on test
performed on Questa Sim10.0. The verification
is done using Verilog HDL.

a) Test Case1 - Reset Case: Reset is
asserted (active high), all signals are assigned
to zero.

JNNCE Journal of Engineering & Management, Volume 4, No.1, January – June 2020 ISSN 2582-0079

 22

b) Test Case2 - Encryption: The AES
Module inputs are driven for encryption and
expected outputs are obtained. All the
sequences below are in hexadecimal.

Plaintext:
11111111111111111111111111111111

CipherKey:
3C4FCF098815F7ABA5D2AE2816157E2B

Expected Ciphertext:
A806164898CFC9ACC0546CB8DDFABF89

c) Test Case3 - Decryption: The AES
Module inputs are driven for decryption and
expected outputs are obtained. All the se-
quences below are in hexadecimal.

Figure 10: Decryption Process

Encrypted Cipherext:
A806164898CFC9ACC0546CB8DDFABF89

Cipher Key:
3C4FCF098815F7ABA5D2AE2816157E2B

Expected Plain Text:
11111111111111111111111111111111
Associated to this results are depicted in figure
9 to 11.

9. Synthesis report

Overall implementation of parallel AES

Algorithm used resources as shown below:
Timing Parameters:
• Speed Grade: -1
•Minimum period: 4.171ns (Maximum
Frequency: 239.733MHz).
•Minimum input arrival time before clock:
3.719ns.
•Maximum output required time after clock:
1.219ns.
•Maximum combinational path delay: 1.261ns.

Figure 11: Decryption Output Waveform

Figure 12: Resource Utilization

10. Conclusion

Each round of encryption associated with
the delay that can be reduced by the parallel
design of AES encryption that operates in
higher frequency than non-pipelined,
non-parallel design. In time critical encryption
applied this type of encryption Sub title in
message throughput. The hardware
implementation of AES provides faster speed
than software implementation like secure key
in encryption and higher throughput.

The work has been extended in order to
increase the security for more severe attacks
since the encryption time has been reduced.

JNNCE Journal of Engineering & Management, Volume 4, No.1, January – June 2020 ISSN 2582-0079

 23

There has been further scope to optimize the
utilization of resources. The implementation
can be further improved to achieve more
efficient usage of the resources and increase
the maximum clock frequency. The key length
can be reduced, maintaining the same security,
in order to optimize there source utilization.
The few gaps have been covered but still a lot
can be done to achieve the security of data
along with the optimization of resources.

References

1. K. Xinmiao Zhang, High speed VLSI
architectures for the AES algorithm ,IEEE
transactions on VLSI systems, Tech. Rep.,
sep2004.

2. Kumar, Mamatha MS Pramod, and M.
Mamatha. "FPGA Implementation Of Low
Area Single Precision Floating Point
Multiplier."International Journal of Science
Technology and Engineering, Vol.2, no. 2
(2016): 560-566.

3. csrc.nist.gov.Publicationsfips-197 National
Institute of Standards and Technology,
Advanced Encryption Standard, Federal
Information Processing Standards 197,
November 2001.

4. M.Natheera Banu, FPGA Based Hardware
Implementation of Encryption Algorithm,
International Journal of Engineering and
Advanced Technology (IJEAT) ISSN: 2249
8958, Volume-3, Issue-4, April 2014.

5. M.Pitchaiah, Philemon Daniel, Praveen,
Implementation of Advanced Encryption
Standard Algorithm, International Journal
of Scientific Engineering Research.

6. Kumar, Pramod, T. V. Narendra, and N. A.
Vinay. "Short Hand Recognition using
Canny Edge Detector." International Jour-
nal 7, no. 5 (2017).

7. Deguang Le, Jinyi Chang , Xingdou Gou ,
Ankang Zhang ,Conglan Lu ,Parallel AES
Algorithm for Fast Data Encryption on
GPU, IEEE journal on AES 2010.

