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Introduction: In 1989, Matsumoto [5]
introduced a manifold M with a Lorentzian

almost paracontact structure (@.{.17.g2).

Mihai and Rosca [6] defined the same
concept independently and obtained several
results on this manifold. The author [9]
introduced Lorentzian almost paracontact
manifold with a structure of the concircular
type and such a manifold is said to be a
(LCS),-manifold, which generalizes the

notion of LP-Sasakian manifolds. The
(LE5),.-manifolds were studied with various

curvature conditions by Venkatesha [14],
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Prakasha [8], Yadav [15], Shaikh et al.
([10,11,12,13]) and others.
Let ™ be a Lorentzian manifold admitting

concircular vector field & (a unit time like)

called the characteristic vector field of the
manifold. Then we have

g6 =1 (1.1)

Since £ is a unit concircular vector field,
there exists a non-zero 1-form s such that
for

g(X.8) =n(X), (1.2)

the equation of the following form holds
(T (Y] = a[g(X. V) +n(X)m(¥)]

(@ = @ (1.3)

for all vector fields X and ¥. Here V denotes

the operator of covariant differentiation with
respect to the Lorentzian metric g and & is a
non zero scalar function satisfying

(Prpa) = (Ka) = da(X] = on(X), (1.4)

o being a certain scalar function.

If we put X ==V, &, (1.5)
then from (1.3) and (1.5) we have
¢ X =X+ n(X)E, (1.6)

from which it follows that ¢ is a symmetric
{1,1) tensor called the structure tensor of
the manifold. Bagewadi et al. [1,3,2] have
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studied irrotational projective curvature
tensor, quasi-conformal curvature tensor and
D-conformal curvature tensor in K-contact,
Kenmotsu and trans-Sasakian manifolds.
Also the authors have proved that these
manifolds are Einstein manifold.

The paper is organized as follows, section 1
and section 2 gives the brief introduction to
(LCS),-manifold, the basic equations of

(LCS),-manifold and definitions of n-
Einstein and  generalized n-Einstein

manifolds. Section 3 deals with the study of
irrotational conharmonic curvature tensor,
where the Ricci tensor vanishes resulting
(3.13), provided(a® = @) = 0. Further,

section 4, 5 and 6 are devoted to the study of
irrotational concircular, M-projective and

quasi-conformal curvature tensors
respectively.
(LES) ,-manifold:

A differentiable manifold M of dimension #

is called Lorentzian concircular structure
manifold [briefly (£€5).-manifold] if it

admits a (1,1} tensor field ¢, a contravariant
vector field &, a covariant vector field 17 and
a Lorentzian metric g which satisfies

p(E) = =1, gl(x.&) =n(x), (2.1)

PN =X +n(X)E, (2.2)
gleX. oY) = g(X.Y) +q(Xin(¥), (2.3)
@ =0, n(pxK) =0, (2.4)

for all X, ¥ ¢ TM. Also in a (LCS),-
manifold ™, the following relations are
satisfied [12]

n(RX.Y)E) = (a® - p)[g(Y.Z)n(X) - g(X.Z)m(Y¥)]
, (2.5)

R(X,Y)E = (a® — g)[n(¥Y )Lk - n(X)Y]. (2.6)
R(x,$)2 = (a® - p)[n(2)X - g(x.2)¢], (2.7)
R(5X)Y = (0 - @) [g(X,Y)¢ - n(¥)4](28)
B(EX)E = (@® - )X + n(X)8].  (2.9)
S0 = (n— 1)(a® - plu(X),

@f = (n—1)(a* — 2)¢, (2.10)
(Va#)(¥) = a[5(X.1)¢ + 2(XHY) +n(1)X)
(2.11)
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S(gX. oY) = 5(X.Y) + (n - 1)(a® - plp(Xin(Y),
(2.12)
where R, § and § are the Riemannian

curvature tensor, the Ricci curvature and the
Ricci operator respectively.
A (LC5)-manifold M™ is said to be an -

Einstein manifold if it satisfies

S(U.V) = ag(UV) + Gp(U)n(¥), (213)
for any vector fields 7 and v, where « and
£ are smooth functions on {(M™, g). If § = @
then =n-Einstein manifold becomes Einstein
manifold.

Next, from (2.13), we have

QU=a U+ gn(tNi, (2.14)

where @ is the Ricci operator.

Again, contracting (2.14) with respect to U
and using (2.1), we see that

= eeE— S (2.15)

Now, substituting X¥=¢& and ¥F=4& in
(2.13) and making use of (2.1) and (2.10),
we obtain

—a+f=—(n—1)(a’ —p). (2.16)
Equating (2.15) and (2.16), we get

= rota=1)(a®-g)
® = -y (2.17) and

f= rmnta=ikatoeh (2.18)

=il
A (LCS),, manifold M™ is said to be a
generalized n-Einstein manifold [16] if the
following condition holds
S(XY) = Ag(X,Y) + pn(X)(Y) + v 2 (XY,
for any vector fields ¥ and ¥, where 4.u
and v are smooth functions and
QX Y) = g($ X 1),
Irrotational Conharmonic  curvature
tensor

Definition: The conharmonic curvature
tensor [4] on «{LCS),-manifold M of

dimension n is defined as

N(kY)Z = B(X,Y)2 -i [S(¥,Z)X - S(%,2)¥ +g(¥,2)QX - g(X.Z)Y),
(3.1)

for any vector fields §.¥ and Z on M.

Definition: Let D be a Riemannian

connection, then the rotation (Curl) of
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conharmonic curvature tensor N on a

Riemannian manifold ™ is defined as

RetN = (Dgh)(X,Y)E + (D, N)(U,Y)E + (B N)(X,U)2 = (D) (X, ¥)U

.(3.2)

With the help of second Bianchi identity, we

have

(DgN)(X,¥)Z + (DR N)(U,¥)Z + (DL N)(X, U)Z = 0.
3.3)

In view of (3.3), (3.2) becomes

RetZ = —(D N)(X,Y)U. (3.4)

If the conharmonic curvature tensor is

irrotational, then ewriN =@ and so by

(3.4), we see that

(D N)(X.¥)U = 0,

which can be expressed as

(3.5)

D (N(X,Y)U) = N(DX.Y)U + N(X,D,Y)U+ N(X,Y)D,U.

(3.6)
By replacing U by ¢ in (3.6), we get
D (NCE,Y)E) = N(DX,Y)E + N(X, DY)+ N(E, YDA
(3.7)
In (3.1), if we put £ = ¢ and using (2.6),
(2.10) and (2.14), we have

REY)E =yp)x—w(2)r],  (38)
Where,
yp=-i£ (39)

Applymg (3.8) in (3.7) and using (1.3), we
obtain
J¥ + 92V I - (XYY,

N(XLY 92 = plg(V.2)0X - g2
(3.10)

Substituting £ by gZ in (3.10) and using
(2.2), (2.4), one can get

R(X.Y)Z = ylg(V.9Z)X - g(X42)Y —n(Z}n(1)X - n(X)T}].

(3.11)

Now, comparing (3.1) and (3.11), we see
that

¥lg(Y.@E)X - g(X,9Z)Y = n(Z){(Y)X - n(X)¥}]

= se(x,f)z—i[scf.z;x -S(REJY 4 oY, 2)Q8 - g X.2)QY).
(3.12)

On contracting with respect to T in (3.12)

and making use of (3 9), we finally obtain

g0+ 2yt - E2 g -0

(3.13)
Thus, we can state the following:
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Theorem: If an n-dimensional (LCS),-

manifold satisfies irrotational conharmonic
curvature tensor, then the Ricci tensor
vanishes  resulting  (3.13), provided
(a* — gl = 0.

Irrotational Concircular curvature tensor
An interesting invariant of a concircular
transformation is the concircular curvature
tensor Z and is given by [17, 18]

Z=R-—"n,, (4.1)

nim=—1)
WhereR; = g(X, Y)W — g(W.¥)X. Here R
and r denotes Riemannian curvature and
scalar curvature respectively.
Definition: Let I be a Riemannian
connection, then the rotation (Curl) of
concircular curvature tensor Z on a
Riemannian manifold #* is defined as
RotZ = (D,Z)(W.X)Y +(D\Z)(V.X)Y 4 (D,2)(W, V)Y - (B, Z)(W.X)V.

(4.2)

By virtue of second Bianchi identity, we
have
(Dp2)(W. XY + (D Z)(V. XY + (Dy2) (W, V)Y = 0.
(4.3)
From (4.3), (4.2) reduces to
RetZ = —(D.Z)(W.X)V.  (4.4)
If the concircular curvature tensor is
irrotational, then cwrl Z=a and by (4.4),
weget (D Z)(W.XIV =0, (45)
that can be written as
By (Z(W, X)) — Z{DpW. X0V 4+ Z(W, Do X)WV 4 Z(W, X 1D, V.
(4.6)
By treating ¥ = ¢ in (4.6), we have
Dy(Z(W. X)) = Z(B, W X) + Z(W, Do )8 + (W, X) Dy,
4.7)
In (4.1) if we put ¥ =
(2.6), we obtain
L(BLXW = o[plX W = (WX,
where @ =[(¢" — gl —

¥ and using (2.1) and

(4.8)
—1. (49

By the use of (4.8) in (4.7) and using (1.3),
we obtain

E(W.X)Y = ofg(¥. X)W - (. W)X £ (1 (X)W = n{Y)n(W)X]
(4.10)

On substituting ¥ by @¥ and using (2.2),

(2.4) and (4.8) in (4.10), we get
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Z(W. )Y = alp(gV.X)W - (gt W)X - a(YIm(X)W + (Y In(W ],
(4.11)
Comparing (4.1) and (4.11) leads to

alg(V. X)W — g(gL. WX —n(VIn(X)W + n(Yin(W)X]

=R(W.X)¥ - M;‘_l [g(¥, W)X — g(X.W)Y]
(4.12)

Contracting (4.12) with respect to W and

using (4.9), one can get
S(5Y) = 1, 6(5T) + p(RN() 49, g(P KY),

(4.13)

where )

R (4.14)
y, = 2@ (4.16)

"
Thus, we can state
Theorem: Let M" be a (LCS),-manifold in

which concircular curvature tensor is
irrotational then the manifold is generalized
n-Einstein manifold.

Irrotational  M-projective

tensor
In 1971, the authors [8] defined a tensor
field ®*" on a Riemannian manifold as

follows

WKY)Z=R(X.Y)Z- ﬁ[ﬂ“” - S(R.Z)Y +g(Y.2)01 - g(X.2)QY],
(6.1)

where R, 5 denotes respectively Riemannian

curvature, Ricci tensor and @ is the Ricci

operator defined by $(X. ¥ = g(@X.¥).

Definition: Let D be a Riemannian

connection, then the rotation (Curl) of M-

projective curvature tensor Z on a

Riemannian manifold ™ is defined as

curvature

B = (L2 (W (0)24 (O - 0 Y2

(5.2)
By virtue of second Bianchi identity, we
have
(DgW WEY)Z+ (D, WULYIZ+ (D WX UZ =0

(5.3
In view of (5.3), (5.2) becomes
FetZ = —(D;W") (X, )W, (5.4)
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If the M-projective curvature tensor is
irrotational, then curi W* = and by using
(5.4), we see that

(DWW (X YVIU =0, (5.5)

which gives

D (W (R )W) = W(DLX U 4 WA(R D10+ WL V)0
(5.6)

Taking {f = { in (5.6), we get

D (WL YR) = W(BR )+ WD) + WX )DL,
(5.7)

Treating Z by ¢ and using (2.6), (2.10) and

(2.14) in (5.1), we obtain

WE Y =zn(YIX—n(X)¥], (538

where
=2 - £) + =

w=1

= (=13 (5% =]

=L J] '

(5.9)

By applying (5.8) in (5.7) and using (1.3),

we get

WH(LY)92 =lg(Z )X - g(&.X)F + 0 Z){n(E)X - n(X)F)].
(5.10)

Substituting Z by ¢Z and making use of

(2.2), (2.4) and (5.8), the above equation

yields

W (LY)2 = [p(eZY)X - (82 X)Y -n(Z)}u(Y)X - (Y.
(5.11)

Equating (5.1) and (5.11), we get

o 21) - (4L (B -2 (0P = R~ 52 -

S(LI)Y + g(¥.2)0X - p(X.2)QY].
(5.12)

On contracting, (5.12) yields

HEZ) = A (Y21 + g Y Ip(2 1+ v g (P21,
(5.13)

where

PUCL )

y, = — 2=l mel g

= =
(=10 *1a®=a)
B
Thus, we can state the theorem:
Theorem: If the M-projective curvature

tensor on a (LC3),-manifold M"® is

irrotational then the manifold is generalized
1-Einstein manifold.

J(r:=
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Irrotational Quasi-conformal curvature

tensor

In 1968, Yano and Sawaki [19] defined and
studied the concept of quasi-conformal
curvature tensor ¢. According to the authors,
quasi-conformal curvature tensor is given by
€I Y)Z = g R Y)E + qofS(r2)8 = S(E.2)Y + g(1,2)QX = g(X.2)gY]

- S(2+ 2q) [g(1E)F — g (X, 2)7],
6.1)

where g, and g, are constants of which

Qz =@,

Definition: Let D be a Riemannian
connection, then the rotation (Curl) of quasi-

conformal curvature tensor £ on
Riemannian manifold 2™ is defined as

Rot* = (D, C)(X. 12 + (0 E) (U112 4 (0, C) (A0 - (2, ) (X W

(6.2)

With the help of second Bianchi identity, we

have

DO+ (0 Oz (B HENE=0.  (6.3)
In view of (6.3), (6.2) becomes

RotZ = —(D,C)(X,.Y)U. (6.4)

If the quasi-conformal curvature tensor is
irrotational, then eurl € =0 and by using

(6.4), we obtain

(D, WX IV =0, (6.5)
which in turn gives

D{C(x 1) = C(DX V)V 4 (X, D,1)0 +C(X,1)D,U. (6.6)

On substituting U by ¢ in the above

equation we get

B(C(RE)E) = CONR + DN+ CNDE.  (6.7)

Treating £ = £ in (6.1) and making use of

(2.1), (2.6), (2.10) and (2.14), we have
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